- (14) D. T. Cromer and J. T. Waber, *Acta Crystallogr.*, 18, 104 (1965).
   (15) R. F. Stewart, J. T. Davidson, and W. T. Simpson, *J. Chem. Phys.*, 42,
- 3175 (1965).
- "International Tables for X-Ray Crystallography", Vol. II, Kynoch Press, (16)Birmingham, England, p 202
- (17) G. J. Visser, G. J. Heeres, J. Walters, and A. Vos, Acta Crystallogr., Sect. B, 24, 467 (1968).
- (18) Supplementary material.
- (19) D. W. J. Cruickshank et al., "Computing Methods and the Phase Problem in X-Ray Crystal Analysis", R. Pepinsky et al., Ed., Pergamon Press, Oxford, 1961.
- (20) E. M. Bradley, J. Chatt, R. L. Richards, and G. A. Sim, J. Chem. Soc. D, 1322 (1969).
- (21) C. Panattoni, R. Bombiere, E. Forsellini, B. Crocioni, and V. Belluco, J. Chem. Soc. D, 187 (1969).
- (22) B. M. Craver, and D. Hall, Acta Crystallogr., 21, 177 (1966).
- (23) D. Moros, J. Dehand, and R. Weiss, C. R. Hebd. Seances Acad. Sci., Ser. C, 276, 1471 (1968).
- (24) V. G. Albano, P. L. Bellon, and M. Sansori, Inorg. Chem., 8, 298 (1969), and references contained therein.
- (25) W. Eventoff, Ph.D. Thesis, University of Michigan, 1972.

- (26) F. Basolo and R. G. Pearson, "Mechanisms of Inorganic Substitution",
- (20) F. basolo and R. O. Pearson, Mechanisms of Inorganic Substitution, Wiley, New York, N.Y., 1967, pp 351-375.
  (27) G. H. Stout and L. H. Jensen, "X-Ray Structure Determination", Macmillan, New York, N.Y., 1968, pp 421-425.
  (28) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 2nd ed, Interscience, New York, N.Y., 1967, pp 45, 115.
  (29) N. C. Stephenson, J. Inorg. Nucl. Chem., 24, 791 (1962).
  (30) J. P. Beale and N. C. Stephenson, Acta Crystallogr., Sect. B, 27, 73 (1971).
- (1971).
- "International Tables for X-Ray Crystallography", Vol. II, Kynoch Press, (31) Birmingham, England, 1962, p 276.
- W. R. Mason, III, and H. B. Gray, J. Am. Chem. Soc., 90, 5721 (1968). (32)
- (33) J. Chatt, G. A. Gamelin, and L. E. Orgel, J. Chem. Soc., 486 (1958).
- (34) J. R. Preer and H. B. Gray, J. Am. Chem. Soc., 92, 7306 (1970).
- (35) G. Dolcetti, A. Peloso, and L. Sindarelli, Gazz. Chim. Ital., 96, 1948 (1966)(36) A. R. Katritzky and A. P. Ambler, "Physical Methods in Heterocyclic
- Chemistry", Vol. 2, A. R. Katritzky, Ed., Academic Press, New York, N.Y., 1963, pp 205-208.
- (37) O. H. S. Greer, W. Kynaston, and H. M. Paisley, Spectrochim. Acta, 19, 549 (1963).

Contribution from the Department of Chemistry, Polytechnic Institute of New York, Brooklyn, New York 11201

# Crystal Chemistry of Struvite Analogs of the Type MgMPO<sub>4</sub>·6H<sub>2</sub>O (M<sup>+</sup> = K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, Tl<sup>+</sup>, NH<sub>4</sub><sup>+</sup>)<sup>1</sup>

E. BANKS,\* R. CHIANELLI,<sup>2a</sup> and R. KORENSTEIN<sup>2b</sup>

#### Received September 4, 1974

The crystallographic properties and the infrared absorption spectra of the struvite analogs of the type MgMPO4·6H2O where  $M^+ = K^+$ ,  $Rb^+$ ,  $Cs^+$ ,  $Tl^+$ , or  $NH4^+$  are reported. The relative stabilities of the struvite analogs are discussed in terms of the radii of the univalent ions.

#### I. Introduction

The mineral struvite (MgNH4PO4.6H2O) is often found associated with living or decomposing organisms. It has been described in ref 3 as being found in dung, putrescent matter, canned foods, and bladder or kidney concretions. The crystal structure was solved with a crystal obtained from a tin of salmon. This structure was based on the earlier work of Bland and Basinski<sup>4</sup> and Whitaker and Jeffery.<sup>5,6</sup> The analogous compound MgKPO4.6H2O was reported as forming an isomorphous series with struvite by Lehr et al.<sup>7</sup> The infrared spectra, X-ray diffraction patterns, and optical and crystallographic properties of struvite and the potassium analog were also reported. Struvite has been compared to the related compound CaKAsO4.8H2O,8 and their biological importance as possible precursors of nuclei of crystallization has been noted. The apparently related materials MgCsPO4.6H2O and MgCsAsO4·6H<sub>2</sub>O have also been reported by Ferrari et al.<sup>9,10</sup> It is the purpose of this report to study the substitution of alkali metals and "pseudoalkali" cations in the struvite crystal structure.

#### **II.** Experimental Section

All crystals were grown by means of the gel diffusion technique. The growth of struvite by the gel diffusion method has been reported by Banks et al.<sup>11,12</sup> An aqueous solution of 0.05 M MgSO4 and  $0.04-0.02 M M_2 EDTA (EDTA = ethylenediaminetetraacetate)$  was adjusted to pH 10 with MOH. Eastman Kodak "ultrapure" calfskin gelatin was dissolved in the resulting solution (55 g/l.) and allowed to set. Before setting, several drops of formaldehyde were added to strengthen the gel and to prevent growth of molds. Generally 100 ml of gel was set in a 250-ml electrolytic beaker. When the gel had set an equivalent amount of a solution of  $0.05 M M_2HPO_4 \cdot xH_2O$ which had been adjusted to pH 10.0 with MOH was carefully poured over the gel. The beaker was covered and the crystal growth proceeded at the gel-liquid interface and into the gel. Experiments were complete within several weeks and the crystals were harvested. Photographs of the resulting crystals may be seen in Figure 1.

All reagents used were Baker Analyzed reagents except the Eastman Kodak calfskin gelatin. Rubidium and cesium phosphates were prepared by neutralizing H<sub>3</sub>PO<sub>4</sub> with an equivalent amount of RbOH or CsOH in situ. Rubidium, ammonium, potassium, and cesium salts of EDTA were prepared by neutralizing H2EDTA with an equivalent amount of RbOH or CsOH also in situ. In the case of the thallium salt TlNO3 was used as a source of thallium and Na2EDTA and NaOH were used. The presence of sodium did not interfere with the growth of MgTlPO4.6H2O or any of the other struvite analogs and Na2EDTA can replace the M2EDTA.

X-Ray powder patterns were taken on a Norelco powder diffractometer with monochromated Cu K $\alpha$  radiation with KCl as an internal standard.

Infrared spectra were taken on a Perkin-Elmer Model 521 spectrometer with the sample in a KBr disk.

Crystal densities were measured either by pycnometric means or by the sink-float method.13

Chemical analyses were performed by Galbraith Laboratories Inc., Knoxville, Tenn.

Crystal size and perfection can be optimized by varying the conditions described above. Table I shows the best conditions tried for each material and the results obtained.

#### **III.** Crystallographic Properties

Crystals of struvite occurred in both wedge-shaped prisms and needles. Twins on (001) such as described by Palache et al.3 are frequently seen. Both MgKPO4.6H2O and MgRbPO4.6H2O were seen only in needle form. MgTlP-O4.6H2O grew in wedge-shaped, distinctly struvite-like crystals and in other shapes. Crystals of MgCsPO4·6H2O were capped hexagonal prisms or trigonal pyramids as described by Ferrari et al.<sup>9,10</sup> All crystals were stable for short periods when taken from their mother liquor except MgRbPO4.6H2O which clouded easily. Struvite crystals may be stored in a capped bottle indefinitely but all other crystals showed a tendency to hydrolyze to a greater or lesser extent over long periods of time. However, the NH4<sup>+</sup>, Tl<sup>+</sup>, and Cs<sup>+</sup> crystals showed a greater degree of stability than the  $K^+$  or  $Rb^+$  crystals. Table II

AIC40631G

Table I

| Compd                                                | Gel soln                                                                                                | Top soln                                                                                        | Remarks                                                                |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| MgKPO <sub>4</sub> ·6H <sub>2</sub> O                | 0.05 <i>M</i> MgSO <sub>4</sub><br>0.04 <i>M</i> K <sub>2</sub> EDTA<br>pH 10 KOH                       | 0.05 <i>M</i> K <sub>2</sub> HPO <sub>4</sub><br>pH 10 KOH                                      | Needles up to 1 cm                                                     |
| MgRbPO₄ 6H₂O                                         | 0.010 $M$ MgSO <sub>4</sub><br>0.005 $M$ Rb <sub>2</sub> EDTA<br>pH 10 RbOH                             | 0.010 <i>M</i> Rb₂HPO₄<br>pH 10 RbOH                                                            | Needles up to 1 cm                                                     |
| MgCsPO <sub>4</sub> 6H <sub>2</sub> O                | 0.05 $M$ MgSO <sub>4</sub><br>0.02 $M$ Cs <sub>2</sub> EDTA<br>pH 10 CsOH                               | 0.05 <i>M</i> Cs <sub>2</sub> HPO <sub>4</sub><br>pH 10 CsOH                                    | Hexagonal pyramids or<br>pyramidal prisms up<br>to several millimeters |
| MgNH <sub>4</sub> PO <sub>4</sub> ·6H <sub>2</sub> O | 0.05 $M$ MgSO <sub>4</sub><br>0.04 $M$ (NH <sub>4</sub> ) <sub>2</sub> EDTA<br>PH 10 NH <sub>4</sub> OH | 0.05 <i>M</i> (NH <sub>4</sub> ) <sub>2</sub> HPO <sub>4</sub><br>pH 10 NH <sub>4</sub> OH      | Needles up to 3 cm or<br>prisms up to 5 mm                             |
| MgTlPO <sub>4</sub> ·6H <sub>2</sub> O               | 0.05 $M \operatorname{MgSO}_4$<br>0.04 $M \operatorname{Na}_2 EDTA$<br>pH 10 NaOH                       | 0.05 <i>M</i> Na <sub>2</sub> HPO <sub>4</sub><br>0.05 <i>M</i> TINO <sub>3</sub><br>pH 10 NaOH | Wedge-shaped prism up<br>to 5 mm                                       |

### Table II. Crystallographic Properties

| Compd                                                  | System                       | <i>a</i> , A                  | b, A               | <i>c</i> , Å                  | z | Ionic<br>radius<br>of M <sup>+</sup> , <sup>a</sup><br>Å | $d_x, g$ ml <sup>-1</sup> | $d_{\mathbf{m}}$ , g ml <sup>-1</sup> | Space<br>group     |
|--------------------------------------------------------|------------------------------|-------------------------------|--------------------|-------------------------------|---|----------------------------------------------------------|---------------------------|---------------------------------------|--------------------|
| MgKPO, 6H, O                                           | Orthorhombic                 | 6.87 <sup>b</sup>             | 11.09 <sup>b</sup> | 6.16 <sup>b</sup>             | 2 | 1.33                                                     | 1.88                      | 1.91 <sup>b</sup>                     | Pm2, n             |
| MgTlPO4 ·6H2O                                          | Orthorhombic                 | 6.861                         | 11.35              | 6.135                         | 2 | 1.44                                                     | 3.00                      | 2.99                                  | Pm2n               |
| Mg(NH <sub>4</sub> )PO <sub>4</sub> ·6H <sub>2</sub> O | Orthorhombic                 | 6.95<br>(6.945) <sup>c</sup>  | $(11.21)^{c}$      | 6.14<br>(6.14) <sup>c</sup>   | 2 | 1.48                                                     | 1.71                      |                                       | $Pm2_1^n$          |
| MgRbPO <sub>4</sub> 6H <sub>2</sub> O                  | Orthorhombic<br>(triclinic?) | 6.852                         | 11.27              | 6.177                         | 2 | 1.48                                                     | 2.18                      | 2.15                                  | $Pm2_1n?$          |
| MgCsPO <sub>4</sub> ·6H <sub>2</sub> O                 | Hexagonal                    | 6.899<br>(6.939) <sup>d</sup> |                    | 11.99<br>(11.99) <sup>d</sup> | 2 | 1.69                                                     | 2.40                      | 2.42<br>(2.43) <sup>d</sup>           | Р6 <sub>3</sub> тс |
|                                                        | Cubic                        | 10.02                         |                    |                               | 4 |                                                          | 2.38                      |                                       | F43m               |

<sup>a</sup> A. F. Wells, "Structural Inorganic Chemistry", 3rd ed, Oxford University Press, London 1967, p 71. <sup>b</sup> JCPDS powder diffraction file card 20-685. <sup>c</sup> JCPDS powder diffraction file card 15-762. <sup>d</sup> References 9 and 10.

Table III. Powder Diffraction Data for MgTlPO<sub>4</sub>· $6H_2O^a$ 

Table IV. Powder Diffraction Data for MgRbPO<sub>4</sub>  $\cdot 6H_2O^a$ ,

| hkl | do    | $d_{\mathbf{c}}$ | I/I <sub>o</sub> | hkl | do    | $d_{\mathbf{c}}$ | $I/I_{o}$ |
|-----|-------|------------------|------------------|-----|-------|------------------|-----------|
| 001 | 6.16  | 6.14             | 10               | 122 | 2.510 | 2.511            | 10        |
| 110 | 5.88  | 5.87             | 100              | 141 | 2.409 | 2.411            | 5         |
| 020 | 5.70  | 5.68             | 10               | 032 | 2.380 | 2.383            | 5         |
| 011 | 5.42  | 5.40             | 60               | 231 | 2.348 | 2.348            | 5         |
| 101 | 4.58  | 4.57             | 50               | 212 | 2.239 | 2.241            | 10        |
| 111 | 4.24  | 4.24             | 55               | 240 | 2.181 | 2.187            | 3         |
| 021 | 4.17  | 4.17             | 60               | 150 | 2.151 | 2.155            | 3         |
| 121 | 3.56  | 3.56             | 65               | 051 | 2.128 | 2.129            | 3         |
| 200 | 3.43  | 3.43             | 10               | 003 | 2.045 | 2.045            | 3         |
| 130 | 3.31  | 3.31             | 50               | 151 | 2.031 | 2.033            | 5         |
| 031 | 3.22  | 3.22             | 20               | 321 | 2.004 | 2.005            | 5         |
| 012 | 2.964 | 2.961            | 30               | 232 | 1.954 | 1.957            | 10        |
| 131 | 2.928 | 2.915            | 10               | 023 | 1.925 | 1.924            | 5         |
| 211 | 2.893 | 2.895            | 25               | 060 | 1.891 | 1.892            | 3         |
| 040 | 2.838 | 2.838            | 10               | 331 | 1.860 | 1.865            | 3         |
| 102 | 2.801 | 2.800            | 10               | 160 | 1.824 | 1.824            | 3         |
| 022 | 2.701 | 2.699            | 20               | 061 | 1.804 | 1.808            | 3         |
| 221 | 2.647 | 2.648            | 10               | 203 | 1.756 | 1.757            | 3         |
| 041 | 2.569 | 2.575            | 3                | 133 | 1.740 | 1.740            | 3         |
| -   |       |                  |                  |     |       |                  |           |

<sup>a</sup> Orthorhombic: a = 6.861 (5), b = 11.35 (2), c = 6.135 (5) A.

compiles the crystallographic properties of the struvite analogs as determined in this work and elsewhere.

Struvite and MgKPO4-6H<sub>2</sub>O gave X-ray powder patterns which agree well with JCPDS powder diffraction cards 15-762 and 20-685, respectively.

MgTlPO4·6H<sub>2</sub>O gave a powder pattern which can be indexed on an orthorhombic cell with a = 6.861, b = 11.35, and c = 6.135 Å as shown in Table III. Table IV shows the powder pattern obtained for MgRbPO4·6H<sub>2</sub>O which can also be indexed on an orthorhombic cell with a = 6.852, b = 11.27, and c = 6.177 Å. Some very weak ( $I/I_0 < 5$ ) lines were seen which could not be indexed on this cell indicating either a second phase such as Mg<sub>3</sub>(PO4)<sub>2</sub>·4H<sub>2</sub>O or a lower symmetry for MgRbPO4·6H<sub>2</sub>O. The latter explanation is supported by infrared evidence discussed later on.

| _ |     |                |                  |           |         |       |                  |         |  |
|---|-----|----------------|------------------|-----------|---------|-------|------------------|---------|--|
|   | hkl | d <sub>o</sub> | $d_{\mathbf{c}}$ | $I/I_{o}$ | hkl     | do    | $d_{\mathbf{c}}$ | $I/I_0$ |  |
|   | 110 | 5.87           | 5.86             | 15        | 141     | 2.402 | 2.401            | 10      |  |
|   | 020 | 5.62           | 5.64             | 5         | 032     | 2.386 | 2.386            | 10      |  |
|   | 011 | 5.43           | 5:42             | 30        | 231     | 2.341 | 2.342            | 10      |  |
|   | 101 | 4.60           | 4.59             | 40        | 132     | 2.247 | 2.248            | 10      |  |
|   | 111 | 4.25           | 4.25             | 100       | 003     | 2.059 | 2.059            | 5       |  |
|   | 021 | 4.17           | 4.16             | 80        | 013     | 2.028 | 2.026            | 10      |  |
|   | 121 | 3.56           | 3.56             | 25        | 232     | 1.954 | 1.958            | 15      |  |
|   | 200 | 3.43           | 3.43             | 35        | 060     | 1.878 | 1.878            | 5       |  |
|   | 130 | 3.30           | 3.29             | 40        | 123,331 | 1.862 | 1.861            | 10      |  |
|   | 031 | 3.22           | 3.21             | 15        | 242     | 1.785 | 1.779            | 5       |  |
|   | 012 | 2.974          | 2.979            | 35        | 213     | 1.742 | 1.744            | 10      |  |
|   | 211 | 2.897          | 2.896            | 100       | 400     | 1.713 | 1.713            | 5       |  |
|   | 040 | 2.824          | 2.818            | 70        | 350     | 1.603 | 1.604            | 5       |  |
|   | 022 | 2.710          | 2.708            | 50        | 261     | 1.589 | 1.591            | 5       |  |
|   | 221 | 2.645          | 2.645            | 35        | 162,170 | 1.565 | 1.563            | 5       |  |
|   | 041 | 2.569          | 2.563            | 5         | 024     | 1.489 | 1.489            | 5       |  |
|   | 122 | 2.517          | 2.519            | 30        | 153     | 1.484 | 1.484            | 5       |  |
|   |     |                |                  |           |         |       |                  |         |  |

<sup>a</sup> Orthorhombic: a = 6.852 (5), b = 11.27 (2), c = 6.177 (5) Å. An unindexed weak line(s) appears at d = 4.04 Å which can be attributed to Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> · 4H<sub>2</sub>O.

| Table V. | Powder   | Diffraction | Data | for |
|----------|----------|-------------|------|-----|
| Hexagona | l MgCsP0 | $0.6H_0^a$  |      |     |

|       |       |                |           |     |       |                |           | _ |
|-------|-------|----------------|-----------|-----|-------|----------------|-----------|---|
| hkl   | do    | d <sub>c</sub> | $I/I_{o}$ | hkl | do    | d <sub>c</sub> | $I/I_{o}$ |   |
| 010   | 5.99  | 5.98           | 20        | 122 | 2.11  | 2.114          | 5         |   |
| 011   | 5.36  | 5.35           | 100       | 030 | 1.993 | 1.992          | 10        |   |
| 012   | 4.23  | 4.23           | 40        | 031 | 1.963 | 1.965          | 20        |   |
| 110   | 3.46  | 3.45           | 70        | 025 | 1.865 | 1.871          | 20        |   |
| 111   | 3.32  | 3.32           | 40        | 220 | 1.725 | 1.725          | 10        |   |
| 020   | 2.984 | 2.988          | 60        | 034 | 1.658 | 1.659          | 5         |   |
| 021   | 2.904 | 2.899          | 20        | 132 | 1.595 | 1.598          | 10        |   |
| 022 · | 2.671 | 2.675          | 30        | 133 | 1.529 | 1.531          | 3         |   |
| 023   | 2.390 | 2.394          | 10        | 224 | 1.493 | 1.495          | 3         |   |
| 120   | 2.259 | 2.259          | 10        | 134 | 1.448 | 1.451          | 3         |   |
| 121   | 2.220 | 2.220          | 10        | 231 | 1.360 | 1.362          | 3         |   |
|       |       |                |           |     |       |                |           |   |

a = 6.899 (5), c = 11.99 (2) Å.

Table VI. Powder Diffraction Data for Cubic MgCsPO4.6H2O



Figure 1. Crystals of struvite  $MgNH_4PO_4 \cdot 6H_2O$  and its Rb, Cs, and Tl analogs.

Table V lists the powder pattern for MgCsPO4.6H2O which can be indexed on a hexagonal cell with a = 6.899 and c =11.99 Å. The *a* axis is somewhat smaller than that reported by Ferrari et al.<sup>9,10</sup> The first product of the MgCsPO<sub>4</sub>·6H<sub>2</sub>O crystal growth experiments yielded a powder pattern composed of the lines reported in Table V plus the lines reported in Table VI. When the experiment was performed at 4° only the lines appearing in Table V were seen. Subtracting the lines for the hexagonal MgCsPO4·6H2O resulted in the powder diffraction pattern appearing in Table VI. This pattern could be indexed on a cubic cell with a = 10.02 (2) Å. The cubic MgCsP-O4•6H<sub>2</sub>O is the analog of MgCsAsO4•6H<sub>2</sub>O with a = 10.18(1) Å which was reported by Ferrari et al.<sup>9,10</sup> They also discussed the structure of this cubic material which has the AsO4<sup>3-</sup> group located on the body diagonal of the cube. The conditions for obtaining the pure cubic form have not been established but it appears to be a higher temperature form.

The structural relation between struvite-like materials has

Table VII. Chemical Analyses

|                                          | MgKPO₄∙<br>6H₂O                 |                                 | MgRbPO₄·<br>6H₂O               |                                | MgTlPO₄ ·<br>6H₂O              |                                | MgTl <sub>0.35</sub> -<br>(NH <sub>4</sub> ) <sub>0.65</sub> PO <sub>4</sub> ·<br>6H <sub>2</sub> O |                                |
|------------------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------|
|                                          | Theor                           | Exptl                           | Theor                          | Exptl                          | Theor                          | Exptl                          | Theor                                                                                               | Exptl                          |
| % Mg<br>% M<br>% P<br>% H <sub>2</sub> O | 9.13<br>14.68<br>11.63<br>40.54 | 9.32<br>14.87<br>11.74<br>39.35 | 7.78<br>27.33<br>9.91<br>34.53 | 7.69<br>27.14<br>9.79<br>33.90 | 5.65<br>47.22<br>7.18<br>25.00 | 5.35<br>42.75<br>8.63<br>24.95 | 7.74<br>23.03<br>11.29<br>40.65                                                                     | 6.92<br>21.75<br>9.51<br>37.92 |

Table VIII. Infrared Spectra of Struvite MgNH<sub>4</sub>PO<sub>4</sub>·6H<sub>2</sub>O

| Band, cm <sup>-1</sup> | Intens                                                         | Assignment                                                                                                 |
|------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 3700-2500<br>3500      | Strong, broad<br>Peak on 3700-2500 cm <sup>-1</sup> ,<br>broad | Water $\nu_1 - \nu_3$ sym-<br>antisym str, NH <sub>4</sub> <sup>+</sup><br>$\nu_1 - \nu_2$ sym-antisym str |
| 3250                   | Peak on 3700-2500 cm <sup>-1</sup> , broad                     |                                                                                                            |
| 2900                   | Peak on 3700-2500 cm <sup>-1</sup> ,<br>broad                  |                                                                                                            |
| 2500-2200              | Medium, broad                                                  | Water-phosphate H<br>bonding                                                                               |
| 1800-1500              | Weak, broad                                                    | Water $\nu_2$ (H-O-H) def + $\nu_2$ (NH <sub>4</sub> <sup>+</sup> )                                        |
| 1470<br>1430<br>1390   | Weak, sharp<br>Medium, sharp<br>Shoulder                       | $NH_4^+ \nu_4$ asym bending<br>split by "restrictive<br>rotation"                                          |
| 1010<br>880            | Very strong, sharp<br>Weak, broad                              | $\nu_3(PO_4^{3-})$ antisym str<br>Ammonium-water<br>H-bonding?                                             |
| 750<br>570<br>450      | Weak, sharp<br>Strong, sharp<br>Weak                           | Water-water H bonding<br>$\nu_4(PO_4^{3-}) P-O$ bend<br>$\nu_2(PO_4^{3-})$                                 |

been discussed by Dickens et al.<sup>8</sup> The structures of the orthorhombic, hexagonal, and cubic materials discussed above are closely related. The magnesium atom is surrounded by an octahedron of water molecules. The difference in the lattice types of these materials is governed by the size of the alkali or "pseudoalkali" ion. For K, Tl, and NH4 the orthorhombic struvite structure is the most stable. For cesium the higher symmetry hexagonal and cubic structures are preferred. The lower stability and more complex powder pattern of the Rb analog suggest that it has a transitional structure of perhaps lower symmetry. The possibility of mixed-alkali struvite analogs seems likely and this has been confirmed for the ammonium ion, as discussed below.

Polarizing microscope studies confirmed the crystallographic assignments described above. SHG (second harmonic generation) measurements with a neodymium glass laser gave positive results indicating acentric space groups for all the struvite analogs. This is in agreement with the X-ray and piezoelectric results of Whitaker and Jeffery,<sup>5,6</sup> who reported an acentric space group for struvite.



Figure 2. Infrared spectrum of  $MgNH_4PO_4 \cdot 6H_2O$ .



# IV. Chemical Analyses

Chemical analyses for the K, Rb, Tl, and Tl--NH4 analogs are shown in Table VII. In some experiments the beakers containing the gels were covered with a paraffin sheet and placed in a refrigerator. The refrigerator contained ammonia in the atmosphere from other experiments containing ammonia; the ammonia would diffuse through the paraffin film and dissolve in the crystal growing solution. This resulted in mixed  $MgM_{1-x}(NH4)_xPO4.6H_2O$  crystals. The powder patterns of these materials showed a single phase. The infrared spectra showed the presence of the ammonium group. This substitution was observed in the cases of Rb, K, and Tl. The substitution of NH4<sup>+</sup> in MgKPO4.6H<sub>2</sub>O was noted by Lehr et al.<sup>7</sup> Although sodium was present in many of the experiments as Na<sub>2</sub>EDTA, chemical analyses never revealed any significant sodium substitution nor was any sodium struvite analog ever seen, suggesting that the struvite structure cannot accommodate univalent ions smaller than  $K^+$  at room temperature.

### V. Infrared Data

The infrared spectra of the struvite analogs are shown in Figures 2–7. The infrared spectra of MgNH4PO4 $\cdot$ 6H2O and MgKPO4 $\cdot$ 6H2O were previously reported by Lehr et al.<sup>7</sup> but no assignments were made. The assignments for struvite are shown in Table VIII and the assignments for the other struvite analogs are shown in Table IX. The spectra and assignments for the struvite analogs are very similar to those reported by





Figure 7. Infrared spectrum of  $MgKPO_4 \cdot 6H_2O$ .

Table IX. Infrared Spectra of the Struvite Analogs (cm<sup>-1</sup>)

| <br>MgKPO <sub>4</sub> ·6H <sub>2</sub> O | MgTlPO <sub>4</sub> ·6H <sub>2</sub> O | MgRbPO <sub>4</sub> ·6H <sub>2</sub> O | MgCsPO <sub>4</sub> ·6H <sub>2</sub> O | Intens                                 | Assignment                                        |
|-------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------|
| <br>3700-2500                             | 3700-2500                              | 3700-2500                              | 3700-2500                              | Strong, broad                          |                                                   |
| 3450                                      | 3500                                   | 3500                                   |                                        | Shoulder                               | $\int \text{Water } v_1 - v_3 \text{ sym} -$      |
| 2950                                      | 2950                                   | 2950                                   | 2950                                   | Peak of 3700-<br>2500 cm <sup>-1</sup> | antisym str                                       |
| 2350                                      | 2350                                   | 2350                                   | 2350                                   | Weak                                   | Water-phosphate<br>hydrogen bonding               |
| 1630                                      | 1600                                   | 1630                                   | 1600                                   | Weak, broad                            | Water $\nu_2$ (H-O-H)<br>def                      |
| $1070 \text{ vw}^a$                       |                                        | 1080                                   |                                        | Shoulder                               | )                                                 |
| 1040 vw                                   |                                        | 1045                                   | 1030 vw                                | Shoulder                               | $\nu_{3}(PO_{4}^{3-})$ P-O                        |
| 1015                                      | 1000                                   | 1015                                   | 995                                    | Strong, sharp                          | antisym str                                       |
|                                           |                                        | <b>99</b> 0                            |                                        | Shoulder                               | $\nu$ , (P-O) sym str                             |
| 900                                       | 900                                    | 900                                    |                                        | Very weak,<br>broad                    | • • • •                                           |
| 730                                       | 750                                    | 750                                    | 850                                    | Medium                                 | Water-water H<br>bonding                          |
| 680                                       | 700                                    | 700                                    |                                        | Shoulder                               | -                                                 |
|                                           |                                        |                                        | 575                                    | Shoulder                               |                                                   |
| 565                                       | 565                                    | 565                                    | 550                                    | Strong, sharp                          | $\nu_4$ (PO <sub>4</sub> <sup>3-</sup> ) P-O bend |
| 430                                       | 440                                    | 430                                    | 415                                    | Weak, sharp                            | $\nu_{2}(PO_{4}^{-3-})$                           |
|                                           |                                        |                                        |                                        |                                        |                                                   |

 $^{a}$  vw = very weak.

Banks et al.<sup>12</sup> for the compounds  $BaNaPO4.9H_2O$  and  $SrNaPO4.9H_2O$ . The assignments for the  $NH4^+$  absorption spectra are based upon the assignments for  $NH4^+$  in NH4Cl reported by Plumb et al.<sup>14</sup>

Plumb et al.<sup>14</sup> and Levy et al.<sup>15</sup> discussed the rotation of the NH<sub>4</sub><sup>+</sup> group in NH<sub>4</sub>Cl. They concluded that the ammonium group was rotating about its threefold axis in a restricted manner, on the basis of the splitting of the  $\nu_4$ asymmetric bending band of the NH<sub>4</sub><sup>+</sup> group. This splitting is also observed in the infrared spectrum of struvite. This agrees with the restricted rotation of the  $NH_4^+$  group in struvite, deduced from X-ray data by Whitaker et al.<sup>5,6</sup>

The splitting of the  $\nu_3$  asymmetric stretch absorption band which occurs near 1000 cm<sup>-1</sup> is a quantitative measure of deviation of the PO<sub>4</sub><sup>3-</sup> group from ideal tetrahedral symmetry. This  $\nu_3$  band is triply degenerate if the tetrahedron is perfect and the degeneracy will lift if the tetrahedron is distorted. Distortion of the PO<sub>4</sub><sup>3-</sup> tetrahedron will also cause the infrared-inactive  $\nu_1$  symmetric stretch to appear weakly in the infrared. This distortion of the PO<sub>4</sub><sup>3-</sup> group, if severe, may lead to a lower symmetry of the crystal lattice. MgCsP-O4.6H2O, MgNH4PO4.6H2O, and MgTlPO4.6H2O show smooth sharp  $v_3$  absorption bands with little or no splitting, and no  $\nu_1$  absorption band is observed. Tl<sup>+</sup> has an ionic radius close to that of NH4<sup>+</sup> and therefore the compound would be expected to be similar to struvite. MgCsPO4•6H2O has a new structure of high symmetry. From this it is concluded that the Cs, Tl, and NH4<sup>+</sup> analogs have regular tetrahedral PO4<sup>3-</sup> groups; this agrees with the observation of Whitaker et al.<sup>5,6</sup> that the tetrahedral angles of PO<sub>4</sub><sup>3-</sup> deviate less than 1° from ideal. The alkali ions in MgKPO4·6H2O and MgRbPO4·6H2O have ionic radii which are farther from NH4+ and both show splitting of the v3 absorption band. In MgRbPO4·6H2O the splitting is severe and the  $\nu_1$  absorption band can be seen at 990 cm<sup>-1</sup>. This indicates a lower symmetry for the Rb analog and possibly the K analog. This is consistent with the observation that these two are the least stable of the struvite analogs. Apparently K<sup>+</sup> and Rb<sup>+</sup> do not fit as well into the struvite structure as the larger ions. The Rb analog is transitional between the struvite structure and the MgCsP-O4.6H2O structure. This raises the possibility of phase transitions in MgRbPO4·6H2O.

In other respects the infrared spectra of the struvite analogs are remarkably similar. This might be expected as the spectra basically reflect the  $(Mg(H_2O)_6PO_4)^-$  host lattice and the changes in the spectra are due to the interaction of the univalent ions with the  $PO_{4^{3-}}$  groups in this host lattice.

#### VI. Conclusions

The struvite structure shows a tendency to incorporate univalent ions ranging in size from 1.33 Å for K 1.69 Å for Cs. For K<sup>+</sup> (R = 1.33 Å), Tl<sup>+</sup> (R = 1.44 Å), NH<sub>4</sub><sup>+</sup> (R =1.48 Å), and Rb<sup>+</sup> (R = 1.48 Å) the structure is orthorhombic. For the larger Cs<sup>+</sup> (R = 1.69 Å) ion, a hexagonal structure becomes stable. The Tl+ analog appears to be the most stable and the NH4<sup>+</sup> analog is also reasonably stable at room temperature, possibly due to hydrogen bonding. Both the K<sup>+</sup> and Rb<sup>+</sup> compounds decompose with time when removed from the mother liquor, indicating that the larger and smaller ions are somewhat strained in the orthorhombic structure. The hexagonal form of the Cs<sup>+</sup> analog also may transform to a cubic form at higher temperatures.

The struvite analogs offer a unique opportunity to study the effect of ionic size on a family of hydrated phosphates. The

substitution of  $NH_4^+$  into the struvite lattice containing  $K^+$ , Rb<sup>+</sup>, and Tl<sup>+</sup> has been observed. Only one of these preparations was chemically analyzed; it has the approximate composition MgTl1/3(NH4)2/3PO4·6H2O. Whether or not this composition is fortuitous is not known. A study of the system  $MgM_xM_{1-x}PO_4 \cdot 6H_2O$  would yield valuable information about ordering, site preference, and the effect of ionic size on this structure. We do not know whether a reversible transition exists between hexagonal and cubic MgCsPO4·6H2O. We do know that at 40° only the hexagonal phase was observed and at higher temperatures mixtures of hexagonal and cubic phases were observed. However, the cubic phase was not seen without the presence of the hexagonal phase at room temperature. It seems possible that the strained orthorhombic MgRbPO4·6H2O may exist in the hexagonal form at higher temperatures or with partial substitution of Cs<sup>+</sup> for Rb<sup>+</sup> ions.

Registry No. MgNH4PO4·6H2O, 13478-16-5; MgCsPO4·6H2O, 54774-72-0; MgKPO4·6H2O, 19004-04-7; MgRbPO4·6H2O, 54774-73-1; MgTlPO4.6H2O, 54774-74-2; struvite, 15490-91-2.

#### **References and Notes**

- (1) Sponsored in part by NIH Grant No. DE 02577 and by NIH Training Grant No. DE 00099.
- (a) Abstracted in part from a dissertation submitted by R. Chianelli to the Department of Chemistry, Polytechnic Institute of New York, in (2)partial fulfillment of the requirements for the Ph.D. degree, June 1974. (b) Abstracted in part from a thesis submitted by R. Korenstein to the Department of Chemistry, Polytechnic Institute of New York, in partial fulfillment of the requirements for the B.S. degree, June 1973.
- (3) C. Palache, H. Berman, and C. Frondel, "Dana's System of Mineralogy", Vol. II, 1951, pp 715-717.
- (4) J. A. Bland and S. J. Basinski, Nature (London), 183, 1385 (1959).
- (5) A. Whitaker and A. W. Jeffery, Acta Crystallogr., Sect. B, 26, 1429 (1970)
- (6) A. Whitaker and A. W. Jeffery, Acta Crystallogr., Sect. B, 25, 1440 (1970).
- (7) J. R. Lehr, E. H. Brown, A. W. Frazier, J. P. Smith, and R. D. Thrasher,
- Tenn. Val. Auth., Chem. Eng. Bull., No. 6 (1967).
  (8) B. Dickens and W. E. Brown, Acta Crystallogr., Sect. B, 25, 1159 (1972).
  (9) A. Ferrari, L. Cavalca, and M. Nardelli, Gazz. Chim. Ital., 85, 169
- (1955). (10) A. Ferrari, L. Cavalca, and M. Nardelli, Gazz. Chim. Ital., 85, 1232 (1955).
- (11) È. Banks, R. Chianelli, and F. Pintchovsky, J. Cryst. Growth, 18, 195 (1973).
- (17.5).
  (12) E. Banks and R. Chianelli, J. Appl. Crystallogr., 7, 301 (1974).
  (13) "International Tables for X-Ray Crystallography", Vol. III, Kynoch Press, Birmingham, England, 1968, pp 17–19.
  (14) R. C. Plumb and D. F. Hornig, J. Chem. Phys., 21, 366–367 (1953).
  (15) H. A. Levy and S. W. Peterson, J. Chem. Phys., 21, 366 (1953).

Contribution from the Laboratorio CNR and Istituto di Chimica Generale e Inorganica dell'Universita di Firenze, 50132 Florence Italy

# Single-Crystal Polarized Electronic Spectra of the Pentakis(2-picoline N-oxide)cobalt(II) Perchlorate Complex

I. BERTINI,\* P. DAPPORTO, D. GATTESCHI, and A. SCOZZAFAVA

# Received May 29, 1974

Single-crystal polarized electronic spectra of the pentakis(2-picoline N-oxide)cobalt(II) perchlorate complex, [Co(C6-H7NO)5](ClO4)2, have been recorded for a crystal modification, the structure of which has been determined. The crystals are monoclinic, space group  $P_{21}/c$ , with cell dimensions a = 10.223 (3) Å, b = 9.659 (3) Å, c = 38.195 (12) Å,  $\beta = 107.92$ (3)°, and Z = 4. The structure was refined to an R factor of 0.076. Assignment of the transitions on the basis of a  $C_{2\nu}$ symmetry is proposed and the energies of the electronic levels are discussed in terms of ligand field and angular overlap parameters.

### Introduction

In the framework of a research program based on single-crystal spectra tending to test the validity of ligand field models for low-symmetry chromophores<sup>1-3</sup> it seemed interesting to investigate the pentakis(2-picoline N-oxide)cobalt(II)

## perchlorate complex<sup>4</sup> (CoO<sub>5</sub>) which is reported to be approximately trigonal bipyramidal.<sup>5</sup> The fact that the donor atoms are five oxygens belonging to five equal ligands should simplify the problem of interpreting the spectra and should therefore give more information on the ligand ability of pyridine

#### AIC403455